How to deal with energy taxes in Article 7 EED

Fredrik von Malmborg, Sweden CA EED, Athens, 27-28 March 2014

Sweden's approach to energy efficiency

- Address market imperfections through a combination of complementary policy instruments
- General economic instruments (taxes, EU ETS), price signals
- Energy performance regulations
- Informative instruments
- RD&D, incl. technology deployment

Energy taxes

- Introduced in 1970's
- Since 1991 a policy tool in energy and climate policy
- Taxation of energy use and emissions of CO₂
- Price differences compared to EU mimimum tax levels, e.g.
 - transport fuels: +36-42%
 - electricity non-commercial use: +38%

Complementary policy instruments

- Municipal energy and climate advisors
- Support to energy efficiency in local authorities
- Regional energy and climate strategies
- Energy audit vouchers
- Programme for energy efficiency in industry
- Network management
- Technology procurement
- Information
- Environmental Code

Calculating effects of different policy instruments

- Taxes: top-down
- Regulations, informative instruments etceteras: bottom-up

Challenges:

- Combining top-down and bottom-up calculations
- Avoid double counting

Sweden's approach

- Effects of different policy instruments have been estimated
- To avoid double counting, effects of all policy instruments combined calculated is if effect of taxes only
- Rationale: energy taxation is the core policy instrument
- This will not disqualify the need for complementary policy instruments

Calculating effects of energy taxation

- Contrafactual analysis: What if MS would lower tax levels to EU minimum tax levels
 - energy taxes
 - VAT
 - $-\Delta P = (p + ET_{MS}) VAT_{MS} (p + ET_{EU}) VAT_{EU}$
- Price elasticities
 - short term
 - long term
 - cross elasticities

How to use price elasticities when calculating cumulative effects?

- Long term effects are estimated over long time periods
- Full effect is reached after several years, but what about the years before?
- Relationship between short and long term effects?
 - behavioural changes, drive less, change mode of transportation
 - investment in new, more energy efficient car

How to use price elasticities when calculating cumulative effects?

- Model effects dynamically, as far as possible, accounting for short and long term elasticities and cross elasticities
- Effect is increasing each year, and cumulates, until full effect is reached
- If dynamic modelling not possible, use "linear" increase anually, assuming:
 - short term effects
 - when full effect is reached

Paths to full effect

Example: households and services

- 10 % price increase electricity
 - 0.7 % short term reduction of energy consumption
 - 5.0 % long term reduction of energy consumption

Dynamic modelling households and services

∆ energy TWh

Example: transport sector

10 % price increase gasoline and diesel

- 4.0 % short term reduction of gasoline consumption
- 6.4 % long term reduction of gasoline consumption
- 0.5 % short term reduction of diesel consumption
- 0.0 % long term reduction of gasoline consumption
- 1.9 % short term reduction of energy consumption
- 2.6 % long term reduction of energy consumption

Dynamic modelling transport sector

∆ energy TWh

Questions?

